Once the raw materials are processed, a number of steps take place to obtain the finished product. Many of these steps are now accomplished using automated equipment. These steps include batching, mixing and grinding, spray-drying, forming, drying, glazing, and firing.
Batching
For many ceramic products, including tile, the body composition is determined by the amount and type of raw materials. The raw materials also determine the color of the tile body, which can be red or white in color, depending on the amount of iron-containing raw materials used. Therefore, it is important to mix the right amounts together to achieve the desired properties. Batch calculations are thus required, which must take into consideration both physical properties and chemical compositions of the raw materials.
Mixing and grinding
Once the ingredients are weighed, they are added together into a shell mixer, ribbon mixer. A ribbon mixer uses helical vanes, and an intensive mixer uses rapidly revolving plows. A shell mixer consists of two cylinders joined into a V, which rotates to tumble and mix the material.
Sometimes it is necessary to add water to improve the mixing of a multiple-ingredient batch as well as to achieve fine grinding. This process is called wet milling and is often performed using a ball mill. The resulting water-filled mixture is called a slurry or slip. The water is then removed from the slurry by filter pressing (which removes 40-50 percent of the moisture), followed by dry milling.
Spray drying
If wet milling is first used, the excess water is usually removed via spray drying. This involves pumping the slurry to an atomizer consisting of a rapidly rotating disk or nozzle. Droplets of the slip are dried as they are heated by a rising hot air column, forming small, free flowing granules that result in a powder suitable for forming.
Tile bodies can also be prepared by dry grinding followed by granulation. Granulation uses a machine in which the mixture of previously dry-ground material is mixed with water in order to form the particles into granules, which again form a powder ready for forming.
Forming
Most tile is formed by dry pressing. In this method, the free flowing powder—containing organic binder or a low percentage of moisture—flows from a hopper into the forming die. The material is compressed in a steel cavity by steel plungers and is then ejected by the bottom plunger. Automated presses are used with operating pressures as high as 2,500 tons.
Several other methods are also used where the tile body is in a wetter, more moldable form. Extrusion plus punching is used to produce irregularly shaped tile and thinner tile faster and more economically. This involves compacting a plastic mass in a high-pressure cylinder and forcing the material to flow out of the cylinder into short slugs. These slugs are then punched into one or more tiles using hydraulic or pneumatic punching presses.
Ram pressing is often used for heavily profiled tiles. With this method, extruded slugs of the tile body are pressed between two halves of a hard or porous mold mounted in a hydraulic press. The formed part is removed by first applying vacuum to the top half of the mold to free the part from the bottom half, followed by forcing air through the top half to free the top part. Excess material must be removed from the part and additional finishing may be needed.
Another process, called pressure glazing, has recently been developed. This process combines glazing and shaping simultaneously by pressing the glaze (in spray-dried powder form) directly in the die filled with the tile body powder. Advantages include the elimination of glazing lines, as well as the glazing waste material (called sludge) that is produced with the conventional method.
Drying
Ceramic tile usually must be dried (at high relative humidity) after forming, especially if a wet method is used. Drying, which can take several days, removes the water at a slow enough rate to prevent shrinkage cracks. Continuous or tunnel driers are used that are heated using gas or oil, infrared lamps, or microwave energy. Infrared drying is better suited for thin tile, whereas microwave drying works better for thicker tile. Another method, impulse drying, uses pulses of hot air flowing in the transverse direction instead of continuously in the material flow direction.
Glazing
To prepare the glaze, similar methods are used as for the tile body. After a batch formulation is calculated, the raw materials are weighed, mixed and dry or wet milled. The milled glazes are then applied using one of the many methods available. In centrifugal glazing or discing, the glaze is fed through a rotating disc that flings or throws the glaze onto the tile. In the bell/waterfall method, a stream of glaze falls onto the tile as it passes on a conveyor underneath. Sometimes, the glaze is simply sprayed on. For multiple glaze applications, screen printing on, under, or between tile that have been wet glazed is used. In this process, glaze is forced through a screen by a rubber squeegee or other device.
Dry glazing is also being used. This involves the application of powders, crushed frits (glass materials), and granulated glazes onto a wet-glazed tile surface. After firing, the glaze particles melt into each other to produce a surface like granite.
Firing
After glazing, the tile must be heated intensely to strengthen it and give it the desired porosity. Two types of ovens, or kilns, are used for firing tile. Wall tile, or tile that is prepared by dry grinding instead of wet milling (see #2 and #3 above), usually requires a two-step process. In this process, the tile goes through a low-temperature firing called bisque firing before glazing. This step removes the volatiles from the material and most or all of the shrinkage. The body and glaze are then fired together in a process called glost firing. Both firing processes take place in a tunnel or continuous kiln, which consists of a chamber through which the ware is slowly moved on a conveyor on refractory batts—shelves built of materials that are resistant to high temperatures—or in containers called saggers. Firing in a tunnel kiln can take two to three days, with firing temperatures around 2,372 degrees Fahrenheit (1,300 degrees Celsius).
For tile that only requires a single firing—usually tile that is prepared by wet milling—roller kilns are generally used. These kilns move the wares on a roller conveyor and do not require kiln furnitures such as batts or saggers. Firing times in roller kilns can be as low as 60 minutes, with firing temperatures around 2,102 degrees Fahrenheit (1,150 degrees Celsius) or more.
After firing and testing, the tile is ready to be packaged and shipped.